Ефремова Раиса Семеновна,
учитель начальных классов,
МБОУ «Вилюйская средняя общеобразовательная школа №2
имени Г.С. Донского»,
город Вилюйск, Вилюйский улус, РС(Я)
Содержание
1 .Введение
2. Методы подготовки к участию математической олимпиаде
3. Содержание математического кружка
4. Психолого- педагогическое сопровождение
5. Заключение.
6. Использованная литература
1 .Введение
Предметная олимпиада школьников является основным средством формирования мотивации к учению, повышению познавательной активности учащихся, развитию их творческих способностей, углублению и расширению знаний по предмету.
Одной из наиболее значимых форм повышенной математической подготовки является математические олимпиады.
Основными задачами математической олимпиады является:
- повышение интереса к математике учащихся;
- вовлечение их в активные занятия этим предметом;
- улучшение математической подготовки учащихся;
- подведение итогов работы кружков, факультативов;
- выявление сильнейших учащихся;
Математическая олимпиада дает детям возможность научиться искать и понимать математический текст, содействует развитию познавательной деятельности младших школьников, способствует творческому развитию, повышению творческой активности у детей, способствует воспитанию у детей чувства ответственности, гордости за достигнутые успехи, расширяет кругозор детей, повышает интерес не только математике, но и другим наукам, позволяет детям убедиться в том, что математические знания, умения, навыки могут пригодиться им в повседневной жизни.
2. Методы подготовки к участию математической олимпиаде
Для успешного проведения олимпиады необходимо выполнение следующих условий:
1. Систематическое проведение всей внеклассной работы по математике
2. Обеспечение регулярности проведение олимпиад
3. Серьезная, содержательная и интересная подготовительная работа перед проведением каждой олимпиады.
4. Хорошая организация проведения олимпиад.
5. Интересное математическое содержание соревнований.
По подготовке к участию в математических олимпиадах включено пять основных этапов:
Первый этап (мотивационный) – исторический экскурс. Это регулярное использование материала истории – исторические задачи и исторические сведения, знакомство с биографиями ученых-математиков, ознакомление с занимательной литературой для детей.
Второй этап (ориентировочный) – учитель разбирает, показывает опорную задачу ( одну из самых распространенных из данной темы, на основе которой можно решить и другие задачи).
Третий этап (исполнительный) – учитель предлагает решить аналогичную задачу, в которой нужно воспроизвести ход своих действий в схожей ситуации.
Четвертый этап (контролирующий) – учитель дает возможность решить 1-2 развивающие задачи, условия которых даются в измененном виде, но сохраняется та же идея решения.
Пятый этап ( мотивационный) – разбор занимательных, шутливых математических задач, которые подбираются учащимися самостоятельно. Этот этап проводят сами дети.
К каждому занятию учитель подбирает 3 типа задач:
1 тип опорная задача
- она должна быть проста для объяснения и понимания, т.е. доступна;
- она должна быть интересна и занимательна;
- идея решения данной задачи должна позволять решать серию других задач;
- задача должна быть познавательна;
- задача должна иметь четкое и ясное описание решения;
- задача должна сопровождаться пояснением с привлечением исторического или занимательного материала, объяснением, показом решения. (Работа с аудиторией)
2 тип аналогичная задача
- она должна решаться тем же самым способом, что и опорная;
- условие задачи должно быть практически аналогичным.
- задача составляется для проверки усвоения способа решения данной конкретной задачи. (Работа с аудиторией)
3 тип развивающая задача
- она должна отличаться по формулировке и способу решения от опорной и аналогичной задачи;
- идея решения ее должна быть той же самой;
- из решений учащихся учитель должен увидеть, усвоена ли учащимися идея решения задач данной темы (Работа с аудиторией.)
При работе с опорными, аналогичными и развивающими задачами важно поддерживать постоянное сотрудничество с детьми, стимулировать учащихся к выполнению заданий, поощрять верные подходы, стараться вникнуть в их рассуждения и направить на верный путь.
3. Содержание математического кружка
План занятия:
Первый этап. Исторические сведения.
Второй этап. Опорная задача.
Третий этап. Аналогичная задача.
Четвертый этап. Развивающая задача.
Пятый этап. Занимательные задачи.
Задание на дом – заочная олимпиада.
Приведу примерные темы кружковых занятий. Можно провести задачи со спичками, ребусы числами, ребусы с буквами, магические квадраты, различные геометрические задачи, числовые закономерности и м.н.д.
Тема: Числовые выражения.
Опорная В записи 66666666 поставьте между некоторыми цифрами знак сложения так, чтобы поучилось выражение, значение которого равно 264.
Аналогичная Составьте числовое выражение, равное числу 100, используя 4 раза цифру 9 и знаки арифметических действий.
Развивающая Между некоторыми цифрами 1 2 3 4 5 поставь знаки действий и скобки так, чтобы получилось 1.
Тема: Ребусы с буквами.
Опорная А+С=СО; А4-3В =2А; ВВ+ВВ = 22
Аналогичная ММ – М = 3 К; 2А +А= 2А; АА+В= СК7
Развивающая ОДИН+ОДИН = МНОГО; ВАГОН+ВАГОН = СОСТАВ
4. Психолого- педагогическое сопровождение
По подготовке учащихся к математическим олимпиадам большую помощь оказывает психолого- педагогическая служба нашей школы. При поступлении в школу проводятся психологические обследования одаренных детей. Особо доступными и практическими методиками диагностического обследования одаренных детей является:
-
Прогрессивная матрица Д.Равена
-
Опросник Айзенка
-
Тест Векслера
-
Опросник Кеттелла
-
Тест умственного развития школьников Борисова Е.М.
По итогам данной диагностики проводится отбор одаренных детей и проводится развивающая работа по программе:
-
«Развитие мышления» авт. А.З. Зак.
-
«Проверьте свои способности» авт. Г. Айзенк
-
«Уроки психологического развития» авт. Н. Локалова
-
«Развитие мышления, внимания, памяти, саморегуляции у младших школьников» авт. И.Артюхова
Заключение.
Участие школьников в олимпиадах способствует раскрытию индивидуальных природных данных, развитию рационального математического мышления, воспитание таких качеств, как настойчивость, целеустремленность, ответственность.
Таким образом, одной из эффективных форм внеклассной работы по математике является олимпиада. Олимпиада развивает у детей интерес к науке, к исследовательской деятельности, кругозор.
Использованная литература:
-
Аммосова Т.П. «Математические олимпиады младших школьников в РС(Якутия)», Якутск 2000. Кудук.
-
Дмитриев И.Г., Алексеева Г.И., Баишева М.И. «Олимпиады по математике города Якутска», Якутск. 2001. МО РС(Я)
-
Попов С.В., Дмитриев И.Г., Баишева М.И. Олимпиады. Математика, Якутск. Бичик 2009 .